
The directed Oberwolfach problem with two tables

The directed Oberwolfach problem with two
tables

Alice Lacaze-Masmonteil, University of Ottawa
Joint work with Daniel Horsley, Monash University

December 11, 2023



The directed Oberwolfach problem with two tables

Acknowledgements

1 Daniel Horsley;

2 Monash Department of Mathematics;

3 Natural Sciences and Engineering Council of Canada.



The directed Oberwolfach problem with two tables

A simple example

The setting: Consider a conference with 12 participants. To
facilitate networking, the organizing committee decides to host 11
banquets. The banquet hall has 2 tables that seat 4 and 8
participants.

The problem: The organizing committee needs a set of 11 seating
arrangements (one for each banquet) such that each participant is
seated to the right of every other participants exactly once.

Is this possible?
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Construction of a seating arrangement

Figure: The 12 participants (one for each vertex).
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Construction of a seating arrangement

Figure: One seating arrangement with one table of length 4 and one table
of length 8.
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Construction of a seating arrangement

Figure: One seating arrangement with one table of length 4 and one table
of length 8.
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Construction of a seating arrangement

Figure: Another seating arrangement with one table of length 4 and one
table of length 8.



The directed Oberwolfach problem with two tables

The directed Oberwolfach problem

The setting: Consider a conference with n participants. To
facilitate networking, the organizing committee decides to host
n − 1 banquets. The banquet hall has t round tables that sit
m1,m2, . . . ,mt participants such that m1 + m2 + . . . + mt = n.

The problem: The organizing committee needs a set of n − 1
seating arrangements (one for each banquet) such that each
participant is seated to the right of every other participants
exactly once.

Is this possible?
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The complete symmetric digraph

Definition

The complete symmetric digraph, denoted K ∗
n , is the digraph on

n vertices in which for every pair of distinct vertices x and y, there
are arcs (x , y) and (y , x).

Figure: The complete graph K4.
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The complete symmetric digraph

Definition

The complete symmetric digraph, denoted K ∗
n , is the digraph on

n vertices in which for every pair of distinct vertices x and y, there
are arcs (x , y) and (y , x).

Figure: The complete symmetric digraph K∗
4 .
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Definitions

Definition

A [m1,m2, . . .mt ]-factor of digraph G is a spanning subdigraph of
G that is the disjoint union of ~Cm1 ,

~Cm2 , . . . ,
~Cmt .

Figure: A [4, 8]-factor of K∗
12.
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Definitions

Definition

A [m1,m2, . . . ,mt ]-factorization of directed G is a decomposition
of G into [m1,m2, . . . ,mt ]-factors.
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The graph-theoretic formulation of the directed OP

Problem (OP∗(m1,m2, . . . ,mt))

If m1 + m2 + . . . + mt = n, does K ∗
n admit a

[m1,m2, . . . ,mt ]-factorization?

If m1 = m2 = . . . = mt = m, then we write OP∗(mt).
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Background

Theorem (Bermond, Germa, and Sotteau (1979); Tillson (1980),
Bennett and Zhang (1990); Adams and Bryant (Unpublished);
Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess,
Francetić, and Šajna (2018); L-M (2024))

The OP∗(mt) has a solution except when
(m, t) 6∈ {(3, 2), (4, 1), (6, 1)}.

The directed OP has been completely resolved when all tables are
of the same length.
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Background

Theorem (Kadri and Šajna (2023+))

Let m1 < m2. The OP∗(m1,m2) has a solution except possibly
when m1 ∈ {4, 6} and m2 is even.

Idea: Take a solution to OP∗(m1
1) and construct a solution to

OP∗(m1,m2).

Problem: OP∗(41) and OP∗(61) do not have a solution.
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Result

Theorem (Horsley and L-M (2023+))

Let m1 < m2. The OP∗(m1,m2) has a solution when m1 ∈ {4, 6}
and m2 is even.

We construct an [m1,m2]-factorization of K ∗
n when m1 + m2 = n,

m1 ∈ {4, 6}, and m2 is even.
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Strategy

Step 1: Decompose K ∗
n into n−3

2 spanning subdigraphs that fall
into one of two isomorphisms classes: G1 and G2.

Step 2: Show that G1 and G2 admit a [m1,m2]-factorization.
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Decomposition of K ∗n where n ≡ 2 (mod 4)

Objective: To construct a [4, 10]-factorization of K ∗
14.

x0 x3 x6 x2 x5 x1 x4 x0

y0 y3 y6 y2 y5 y1 y4 y0

Figure: Partitioning the vertices of K∗
2(7).
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Decomposition of K ∗n where n ≡ 2 (mod 4)

Objective: To construct a [4, 10]-factorization of K ∗
14.

x0 x3 x6 x2 x5 x1 x4 x0

y0 y3 y6 y2 y5 y1 y4 y0

Figure: The first directed graph G1 = ~C7[2].
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Decomposition of K ∗n where n ≡ 2 (mod 4)

Objective: To construct a [4, 10]-factorization of K ∗
14.

x0 x3 x6 x2 x5 x1 x4 x0

y0 y3 y6 y2 y5 y1 y4 y0

Figure: The underlying graph of ~C7[2] written C7[2].
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Easy result

Lemma (Häggkvist Lemma (Häggkvist (1985)))

Let m1,m2, . . . ,mt be even integers greater than 2. The graph
Cr [2] admits a undirected [m1,m2, . . . ,mt ]-factorization.

x0 x3 x6 x2 x5 x1 x4 x0

y0 y3 y6 y2 y5 y1 y4 y0

Figure: A undirected [4, 10]-factor of C7[2].
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Easy result

Corollary

Let m1,m2, . . . ,mt be even integers greater than 2. The graph
~Cr [2] admits an [m1,m2, . . . ,mt ]-factorization.

x0 x3 x6 x2 x5 x1 x4 x0

y0 y3 y6 y2 y5 y1 y4 y0

Figure: Two directed [4, 10]-factors of ~C7[2].
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Second spanning subdigraph

x0 x1 x2 x3 x4 x5 x6 x0 x1

y0 y1 y2 y3 y4 y5 y6 y0 y1

Figure: The underlying graph of G2.

Each edge represents a pair of arcs, one for each direction.
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Constructing a [4, 10]-factor.

x0 x1 x2 x3 x4 x5 x6 x0 x1

y0 y1 y2 y3 y4 y5 y6 y0 y1

Figure: A [4, 10]-factor of G2.
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Extension: a simple guide

Step 1:
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Extension: a simple guide

Step 2:
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Extension: a simple guide

Step 3:
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Extension

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

Figure: A [4, 10]-factor of G2.

x7 x8 x9 x10 x0 x1

y7 y8 y9 y10 y0 y1

Figure: An extension of length 8.
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Extension

x0 x1 x2 x3 x4 x5 x6 x7 x8

y0 y1 y2 y3 y4 y5 y6 y7 y8

Figure: A [4, 10]-factor of G2.

x7 x8 x9 x10 x11 x12 x13 x14 x0 x1

y7 y8 y9 y10 y11 y12 y13 y14 y0 y1

Figure: An extension of length 16.
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Proposition

The digraph G2 admits a [m1,m2]-factorization for m1 ∈ {4, 6}
and m1 + m2 ≡ 2 (mod 4).
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The case n ≡ 0 (mod 4)

We obtain a decomposition of K ∗
n into the following two digraphs:

Figure: The first directed graph G1 = ~C8[2].

Figure: The underlying graph of G2.
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A complete solution

Theorem (Kadri and Šajna (2023+) and Horsley and L-M
(2023+))

Let m1 < m2. The OP∗(m1,m2) has a solution.

Next step: To generalize our methods to obtain a solution to
OP∗(m1,m2, . . . ,mt) for any combinations of even m1,m2, . . .mt .


