The directed Oberwolfach problem with two tables

Alice Lacaze-Masmonteil, University of Ottawa Joint work with Daniel Horsley, Monash University

December 11, 2023

Acknowledgements

- Daniel Horsley;
- 2 Monash Department of Mathematics;
- 3 Natural Sciences and Engineering Council of Canada.

A simple example

The setting: Consider a conference with 12 participants. To facilitate networking, the organizing committee decides to host 11 banquets. The banquet hall has 2 tables that seat 4 and 8 participants.

The problem: The organizing committee needs a set of 11 seating arrangements (one for each banquet) such that each participant is seated to the right of every other participants exactly once.

Is this possible?

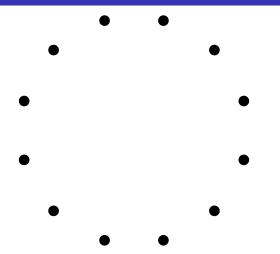


Figure: The 12 participants (one for each vertex).

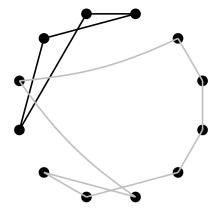


Figure: One seating arrangement with one table of length 4 and one table of length 8.

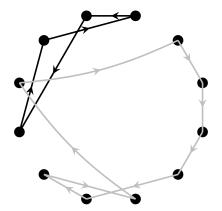


Figure: One seating arrangement with one table of length 4 and one table of length 8.

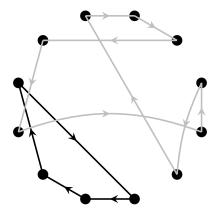


Figure: Another seating arrangement with one table of length 4 and one table of length 8.

The directed Oberwolfach problem

The setting: Consider a conference with n participants. To facilitate networking, the organizing committee decides to host n-1 banquets. The banquet hall has t round tables that sit m_1, m_2, \ldots, m_t participants such that $m_1 + m_2 + \ldots + m_t = n$.

The problem: The organizing committee needs a set of n-1 seating arrangements (one for each banquet) such that each participant is seated **to the right** of every other participants exactly once.

Is this possible?

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on n vertices in which for every pair of distinct vertices x and y, there are arcs(x,y) and (y,x).

Figure: The complete graph K_4 .

The complete symmetric digraph

Definition

The **complete symmetric digraph**, denoted K_n^* , is the digraph on n vertices in which for every pair of distinct vertices x and y, there are arcs(x,y) and (y,x).

Figure: The complete symmetric digraph K_{Δ}^* .

Definitions

Definition

A $[m_1, m_2, ..., m_t]$ -factor of digraph G is a spanning subdigraph of G that is the disjoint union of $\vec{C}_{m_1}, \vec{C}_{m_2}, ..., \vec{C}_{m_t}$.



Figure: A [4,8]-factor of K_{12}^* .

Definitions

Definition

A $[m_1, m_2, ..., m_t]$ -factorization of directed G is a decomposition of G into $[m_1, m_2, ..., m_t]$ -factors.

The graph-theoretic formulation of the directed OP

Problem $(OP^*(m_1, m_2, \dots, m_t))$

If
$$m_1 + m_2 + \ldots + m_t = n$$
, does K_n^* admit a $[m_1, m_2, \ldots, m_t]$ -factorization?

If
$$m_1 = m_2 = \ldots = m_t = m$$
, then we write $OP^*(m^t)$.

Background

Theorem (Bermond, Germa, and Sotteau (1979); Tillson (1980), Bennett and Zhang (1990); Adams and Bryant (Unpublished); Abel, Bennett, and Ge (2002); Burgess and Šajna (2014); Burgess, Francetić, and Šajna (2018); L-M (2024))

The
$$OP^*(m^t)$$
 has a solution except when $(m, t) \notin \{(3, 2), (4, 1), (6, 1)\}.$

The directed OP has been completely resolved when all tables are of the same length.

Background

Theorem (Kadri and Šajna (2023+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution except possibly when $m_1 \in \{4, 6\}$ and m_2 is even.

Idea: Take a solution to $OP^*(m_1^1)$ and construct a solution to $OP^*(m_1, m_2)$.

Problem: $OP^*(4^1)$ and $OP^*(6^1)$ do not have a solution.

Result

Theorem (Horsley and L-M (2023+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution when $m_1 \in \{4, 6\}$ and m_2 is even.

We construct an $[m_1, m_2]$ -factorization of K_n^* when $m_1 + m_2 = n$, $m_1 \in \{4, 6\}$, and m_2 is even.

Strategy

Step 1: Decompose K_n^* into $\frac{n-3}{2}$ spanning subdigraphs that fall into one of two isomorphisms classes: G_1 and G_2 .

Step 2: Show that G_1 and G_2 admit a $[m_1, m_2]$ -factorization.

Decomposition of K_n^* where $n \equiv 2 \pmod{4}$

Objective: To construct a [4, 10]-factorization of K_{14}^* .

$$x_0$$
 x_3 x_6 x_2 x_5 x_1 x_4 x_0

Figure: Partitioning the vertices of $K_{2(7)}^*$.

Decomposition of K_n^* where $n \equiv 2 \pmod{4}$

Objective: To construct a [4, 10]-factorization of K_{14}^* .

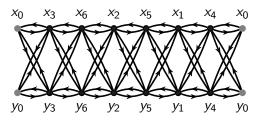


Figure: The first directed graph $G_1 = \vec{C_7}[2]$.

Decomposition of K_n^* where $n \equiv 2 \pmod{4}$

Objective: To construct a [4, 10]-factorization of K_{14}^* .

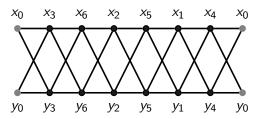


Figure: The underlying graph of $\vec{C_7}[2]$ written $C_7[2]$.

Easy result

Lemma (Häggkvist Lemma (Häggkvist (1985)))

Let $m_1, m_2, ..., m_t$ be even integers greater than 2. The graph $C_r[2]$ admits a undirected $[m_1, m_2, ..., m_t]$ -factorization.

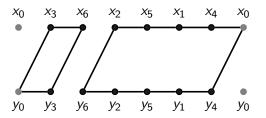


Figure: A undirected [4, 10]-factor of $C_7[2]$.

Easy result

Corollary

Let $m_1, m_2, ..., m_t$ be even integers greater than 2. The graph $\vec{C_r}[2]$ admits an $[m_1, m_2, ..., m_t]$ -factorization.

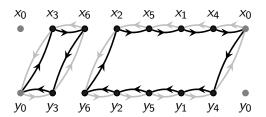


Figure: Two directed [4, 10]-factors of \vec{C}_7 [2].

Second spanning subdigraph

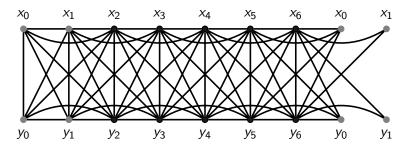


Figure: The underlying graph of G_2 .

Each edge represents a pair of arcs, one for each direction.

Constructing a [4, 10]-factor.

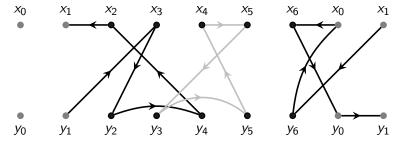


Figure: A [4, 10]-factor of G_2 .

Extension: a simple guide

Step 1:

Extension: a simple guide

Step 2:

Extension: a simple guide

Step 3:

Extension

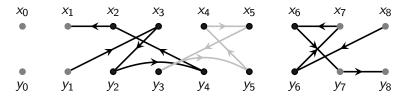


Figure: A [4, 10]-factor of G_2 .

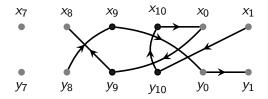


Figure: An extension of length 8.

Extension

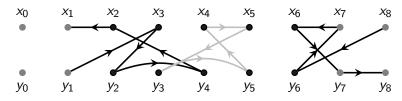


Figure: A [4, 10]-factor of G_2 .

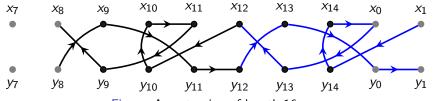


Figure: An extension of length 16.

Proposition

The digraph G_2 admits a $[m_1, m_2]$ -factorization for $m_1 \in \{4, 6\}$ and $m_1 + m_2 \equiv 2 \pmod{4}$.

The case $n \equiv 0 \pmod{4}$

We obtain a decomposition of K_n^* into the following two digraphs:

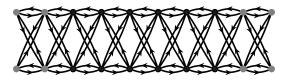


Figure: The first directed graph $G_1 = \vec{C_8}[2]$.

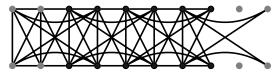


Figure: The underlying graph of G_2 .

A complete solution

Theorem (Kadri and Šajna (2023+) and Horsley and L-M (2023+))

Let $m_1 < m_2$. The $OP^*(m_1, m_2)$ has a solution.

Next step: To generalize our methods to obtain a solution to $OP^*(m_1, m_2, ..., m_t)$ for any combinations of even $m_1, m_2, ..., m_t$.